Java线程通信

①同步

这里讲的同步是指多个线程通过synchronized关键字这种方式来实现线程间的通信。

参考示例:

public class MyObject {

    synchronized public void methodA() {
        //do something....
    }

    synchronized public void methodB() {
        //do some other thing
    }
}

public class ThreadA extends Thread {

    private MyObject object;
//省略构造方法
    @Override
    public void run() {
        super.run();
        object.methodA();
    }
}

public class ThreadB extends Thread {

    private MyObject object;
//省略构造方法
    @Override
    public void run() {
        super.run();
        object.methodB();
    }
}

public class Run {
    public static void main(String[] args) {
        MyObject object = new MyObject();

        //线程A与线程B 持有的是同一个对象:object
        ThreadA a = new ThreadA(object);
        ThreadB b = new ThreadB(object);
        a.start();
        b.start();
    }
}

由于线程A和线程B持有同一个MyObject类的对象object,尽管这两个线程需要调用不同的方法,但是它们是同步执行的,比如:线程B需要等待线程A执行完了methodA()方法之后,它才能执行methodB()方法。这样,线程A和线程B就实现了 通信。

这种方式,本质上就是“共享内存”式的通信。多个线程需要访问同一个共享变量,谁拿到了锁(获得了访问权限),谁就可以执行。

②while轮询的方式

代码如下:

import java.util.ArrayList;
import java.util.List;

public class MyList {

    private List<String> list = new ArrayList<String>();
    public void add() {
        list.add("elements");
    }
    public int size() {
        return list.size();
    }
}

import mylist.MyList;

public class ThreadA extends Thread {

    private MyList list;

    public ThreadA(MyList list) {
        super();
        this.list = list;
    }

    @Override
    public void run() {
        try {
            for (int i = 0; i < 10; i++) {
                list.add();
                System.out.println("添加了" + (i + 1) + "个元素");
                Thread.sleep(1000);
            }
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

import mylist.MyList;

public class ThreadB extends Thread {

    private MyList list;

    public ThreadB(MyList list) {
        super();
        this.list = list;
    }

    @Override
    public void run() {
        try {
            while (true) {
                if (list.size() == 5) {
                    System.out.println("==5, 线程b准备退出了");
                    throw new InterruptedException();
                }
            }
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

import mylist.MyList;
import extthread.ThreadA;
import extthread.ThreadB;

public class Test {

    public static void main(String[] args) {
        MyList service = new MyList();

        ThreadA a = new ThreadA(service);
        a.setName("A");
        a.start();

        ThreadB b = new ThreadB(service);
        b.setName("B");
        b.start();
    }
}

在这种方式下,线程A不断地改变条件,线程ThreadB不停地通过while语句检测这个条件(list.size()==5)是否成立 ,从而实现了线程间的通信。但是这种方式会浪费CPU资源。之所以说它浪费资源,是因为JVM调度器将CPU交给线程B执行时,它没做啥“有用”的工作,只是在不断地测试 某个条件是否成立。就类似于现实生活中,某个人一直看着手机屏幕是否有电话来了,而不是: 在干别的事情,当有电话来时,响铃通知TA电话来了。关于线程的轮询的影响,可参考:JAVA多线程之当一个线程在执行死循环时会影响另外一个线程吗?

这种方式还存在另外一个问题:

轮询的条件的可见性问题,关于内存可见性问题,可参考:JAVA多线程之volatile 与 synchronized 的比较中的第一点“一,volatile关键字的可见性”

线程都是先把变量读取到本地线程栈空间,然后再去再去修改的本地变量。因此,如果线程B每次都在取本地的 条件变量,那么尽管另外一个线程已经改变了轮询的条件,它也察觉不到,这样也会造成死循环。

③wait/notify机制

import java.util.ArrayList;
import java.util.List;

public class MyList {

    private static List<String> list = new ArrayList<String>();

    public static void add() {
        list.add("anyString");
    }

    public static int size() {
        return list.size();
    }
}


public class ThreadA extends Thread {

    private Object lock;

    public ThreadA(Object lock) {
        super();
        this.lock = lock;
    }

    @Override
    public void run() {
        try {
            synchronized (lock) {
                if (MyList.size() != 5) {
                    System.out.println("wait begin "
                            + System.currentTimeMillis());
                    lock.wait();
                    System.out.println("wait end  "
                            + System.currentTimeMillis());
                }
            }
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}


public class ThreadB extends Thread {
    private Object lock;

    public ThreadB(Object lock) {
        super();
        this.lock = lock;
    }

    @Override
    public void run() {
        try {
            synchronized (lock) {
                for (int i = 0; i < 10; i++) {
                    MyList.add();
                    if (MyList.size() == 5) {
                        lock.notify();
                        System.out.println("已经发出了通知");
                    }
                    System.out.println("添加了" + (i + 1) + "个元素!");
                    Thread.sleep(1000);
                }
            }
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

public class Run {

    public static void main(String[] args) {

        try {
            Object lock = new Object();

            ThreadA a = new ThreadA(lock);
            a.start();

            Thread.sleep(50);

            ThreadB b = new ThreadB(lock);
            b.start();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

线程A要等待某个条件满足时(list.size()==5),才执行操作。线程B则向list中添加元素,改变list 的size。

A,B之间如何通信的呢?也就是说,线程A如何知道 list.size() 已经为5了呢?

这里用到了Object类的 wait() 和 notify() 方法。

当条件未满足时(list.size() !=5),线程A调用wait() 放弃CPU,并进入阻塞状态。—不像②while轮询那样占用CPU

当条件满足时,线程B调用 notify()通知 线程A,所谓通知线程A,就是唤醒线程A,并让它进入可运行状态。

这种方式的一个好处就是CPU的利用率提高了。

但是也有一些缺点:比如,线程B先执行,一下子添加了5个元素并调用了notify()发送了通知,而此时线程A还执行;当线程A执行并调用wait()时,那它永远就不可能被唤醒了。因为,线程B已经发了通知了,以后不再发通知了。这说明:通知过早,会打乱程序的执行逻辑。

1.如何让两个线程依次执行?

2.那如何让 两个线程按照指定方式有序交叉运行呢?

3.四个线程 A B C D,其中 D 要等到 A B C 全执行完毕后才执行,而且 A B C 是同步运行的

4.三个运动员各自准备,等到三个人都准备好后,再一起跑

5.子线程完成某件任务后,把得到的结果回传给主线程

1.如何让两个线程依次执行?

假设有两个线程,一个是线程 A,另一个是线程 B,两个线程分别依次打印 1-3 三个数字即可。我们来看下代码:

private static void demo1() {
    Thread A = new Thread(new Runnable() {
        @Override
        public void run() {
            printNumber("A");
        }
    });
    Thread B = new Thread(new Runnable() {
        @Override
        public void run() {
            printNumber("B");
        }
    });
    A.start();
    B.start();
}

其中的 printNumber(String) 实现如下,用来依次打印 1, 2, 3 三个数字:

private static void printNumber(String threadName) {
    int i=0;
    while (i++ < 3) {
        try {
            Thread.sleep(100);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        System.out.println(threadName + "print:" + i);
    }
}

这时我们得到的结果是:

B print: 1
A print: 1
B print: 2
A print: 2
B print: 3
A print: 3

可以看到 A 和 B 是同时打印的。

那么,如果我们希望 B 在 A 全部打印 完后再开始打印呢?我们可以利用 thread.join() 方法,代码如下:

private static void demo2() {
    Thread A = new Thread(new Runnable() {
        @Override
        public void run() {
            printNumber("A");
        }
    });
    Thread B = new Thread(new Runnable() {
        @Override
        public void run() {
            System.out.println("B 开始等待 A");
            try {
                A.join();
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            printNumber("B");
        }
    });
    B.start();
    A.start();
}

得到的结果如下:

B 开始等待 A
A print: 1
A print: 2
A print: 3

B print: 1
B print: 2
B print: 3

所以我们能看到 A.join() 方法会让 B 一直等待直到 A 运行完毕。

2.那如何让 两个线程按照指定方式有序交叉运行呢?

还是上面那个例子,我现在希望 A 在打印完 1 后,再让 B 打印 1, 2, 3,最后再回到 A 继续打印 2, 3。这种需求下,显然 Thread.join() 已经不能满足了。我们需要更细粒度的锁来控制执行顺序。

这里,我们可以利用 object.wait() 和 object.notify() 两个方法来实现。代码如下:

/**
 * A 1, B 1, B 2, B 3, A 2, A 3
 */
private static void demo3() {
    Object lock = new Object();
    Thread A = new Thread(new Runnable() {
        @Override
        public void run() {
            synchronized (lock) {
                System.out.println("A 1");
                try {
                    lock.wait();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println("A 2");
                System.out.println("A 3");
            }
        }
    });
    Thread B = new Thread(new Runnable() {
        @Override
        public void run() {
            synchronized (lock) {
                System.out.println("B 1");
                System.out.println("B 2");
                System.out.println("B 3");
                lock.notify();
            }
        }
    });
    A.start();
    B.start();
} 打印结果如下:

A 1
A waiting…

B 1
B 2
B 3
A 2
A 3

正是我们要的结果。

3.四个线程 A B C D,其中 D 要等到 A B C 全执行完毕后才执行,而且 A B C 是同步运行的

最开始我们介绍了 thread.join(),可以让一个线程等另一个线程运行完毕后再继续执行,那我们可以在 D 线程里依次 join A B C,不过这也就使得 A B C 必须依次执行,而我们要的是这三者能同步运行。

或者说,我们希望达到的目的是:A B C 三个线程同时运行,各自独立运行完后通知 D;对 D 而言,只要 A B C 都运行完了,D 再开始运行。针对这种情况,我们可以利用 CountdownLatch 来实现这类通信方式。它的基本用法是:

创建一个计数器,设置初始值,CountdownLatch countDownLatch = new CountDownLatch(2); 在 等待线程 里调用 countDownLatch.await() 方法,进入等待状态,直到计数值变成 0; 在 其他线程 里,调用 countDownLatch.countDown() 方法,该方法会将计数值减小 1; 当 其他线程 的 countDown() 方法把计数值变成 0 时,等待线程 里的 countDownLatch.await() 立即退出,继续执行下面的代码。 实现代码如下:

private static void runDAfterABC() {
int worker = 3;
CountDownLatch countDownLatch = new CountDownLatch(worker);
new Thread(new Runnable() {
    @Override
    public void run() {
        System.out.println("D is waiting for other three threads");
        try {
            countDownLatch.await();
            System.out.println("All done, D starts working");
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}).start();
for (char threadName='A'; threadName <= 'C'; threadName++) {
    final String tN = String.valueOf(threadName);
    new Thread(new Runnable() {
        @Override
        public void run() {
            System.out.println(tN + "is working");
            try {
                Thread.sleep(100);
            } catch (Exception e) {
                e.printStackTrace();
            }
            System.out.println(tN + "finished");
            countDownLatch.countDown();
        }
    }).start();
} }

下面是运行结果:

D is waiting for other three threads
A is working
B is working
C is working

A finished
C finished
B finished

All done, D starts working 其实简单点来说,CountDownLatch 就是一个倒计数器,我们把初始计数值设置为3,当 D 运行时,先调用 countDownLatch.await() 检查计数器值是否为 0,若不为 0 则保持等待状态;当A B C 各自运行完后都会利用countDownLatch.countDown(),将倒计数器减 1,当三个都运行完后,计数器被减至 0;此时立即触发 D 的 await() 运行结束,继续向下执行。

因此,CountDownLatch 适用于一个线程去等待多个线程的情况。

4.三个运动员各自准备,等到三个人都准备好后,再一起跑

上面是一个形象的比喻,针对 线程 A B C 各自开始准备,直到三者都准备完毕,然后再同时运行 。也就是要实现一种 线程之间互相等待 的效果,那应该怎么来实现呢?

上面的 CountDownLatch 可以用来倒计数,但当计数完毕,只有一个线程的 await() 会得到响应,无法让多个线程同时触发。

为了实现线程间互相等待这种需求,我们可以利用 CyclicBarrier 数据结构,它的基本用法是:

先创建一个公共 CyclicBarrier 对象,设置 同时等待 的线程数,CyclicBarrier cyclicBarrier = new CyclicBarrier(3); 这些线程同时开始自己做准备,自身准备完毕后,需要等待别人准备完毕,这时调用 cyclicBarrier.await(); 即可开始等待别人; 当指定的 同时等待 的线程数都调用了 cyclicBarrier.await();时,意味着这些线程都准备完毕好,然后这些线程才 同时继续执行。 实现代码如下,设想有三个跑步运动员,各自准备好后等待其他人,全部准备好后才开始跑:

private static void runABCWhenAllReady() {
    int runner = 3;
    CyclicBarrier cyclicBarrier = new CyclicBarrier(runner);
    final Random random = new Random();
    for (char runnerName='A'; runnerName <= 'C'; runnerName++) {
        final String rN = String.valueOf(runnerName);
        new Thread(new Runnable() {
            @Override
            public void run() {
                long prepareTime = random.nextInt(10000) + 100;
                System.out.println(rN + "is preparing for time:" + prepareTime);
                try {
                    Thread.sleep(prepareTime);
                } catch (Exception e) {
                    e.printStackTrace();
                }
                try {
                    System.out.println(rN + "is prepared, waiting for others");
                    cyclicBarrier.await(); // 当前运动员准备完毕,等待别人准备好
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } catch (BrokenBarrierException e) {
                    e.printStackTrace();
                }
                System.out.println(rN + "starts running"); // 所有运动员都准备好了,一起开始跑
            }
        }).start();
    }
}

打印的结果如下:

A is preparing for time: 4131
B is preparing for time: 6349
C is preparing for time: 8206

A is prepared, waiting for others

B is prepared, waiting for others

C is prepared, waiting for others

C starts running
A starts running
B starts running

5.子线程完成某件任务后,把得到的结果回传给主线程

实际的开发中,我们经常要创建子线程来做一些耗时任务,然后把任务执行结果回传给主线程使用,这种情况在 Java 里要如何实现呢?

回顾线程的创建,我们一般会把 Runnable 对象传给 Thread 去执行。Runnable定义如下:

public interface Runnable {
    public abstract void run();
}

可以看到 run() 在执行完后不会返回任何结果。那如果希望返回结果呢?这里可以利用另一个类似的接口类 Callable:

@FunctionalInterface
public interface Callable<V> {
    /**
     * Computes a result, or throws an exception if unable to do so.
     *
     * @return computed result
     * @throws Exception if unable to compute a result
     */
    V call() throws Exception;
}

可以看出 Callable 最大区别就是返回范型 V 结果。

那么下一个问题就是,如何把子线程的结果回传回来呢?在 Java 里,有一个类是配合 Callable 使用的:FutureTask,不过注意,它获取结果的 get 方法会阻塞主线程。

举例,我们想让子线程去计算从 1 加到 100,并把算出的结果返回到主线程。

private static void doTaskWithResultInWorker() {
    Callable<Integer> callable = new Callable<Integer>() {
        @Override
        public Integer call() throws Exception {
            System.out.println("Task starts");
            Thread.sleep(1000);
            int result = 0;
            for (int i=0; i<=100; i++) {
                result += i;
            }
            System.out.println("Task finished and return result");
            return result;
        }
    };
    FutureTask<Integer> futureTask = new FutureTask<>(callable);
    new Thread(futureTask).start();
    try {
        System.out.println("Before futureTask.get()");
        System.out.println("Result:" + futureTask.get());
        System.out.println("After futureTask.get()");
    } catch (InterruptedException e) {
        e.printStackTrace();
    } catch (ExecutionException e) {
        e.printStackTrace();
    }
}

打印结果如下:

Before futureTask.get()

Task starts
Task finished and return result

Result: 5050
After futureTask.get()

可以看到,主线程调用 futureTask.get() 方法时阻塞主线程;然后 Callable 内部开始执行,并返回运算结果;此时 futureTask.get() 得到结果,主线程恢复运行。

这里我们可以学到,通过 FutureTask 和 Callable 可以直接在主线程获得子线程的运算结果,只不过需要阻塞主线程。当然,如果不希望阻塞主线程,可以考虑利用 ExecutorService,把 FutureTask 放到线程池去管理执行。

小结

多线程是现代语言的共同特性,而线程间通信、线程同步、线程安全是很重要的话题。本文针对 Java 的线程间通信进行了大致的讲解,后续还会对线程同步、线程安全进行讲解。